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Abstract We highlight the advantages of using simultaneously the Shannon and
Fisher information measures in providing a useful form of the uncertainty relation
for the position-momentum case. It does not require any Fourier transformation. The
sensitivity is also noteworthy.
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1 Introduction

Heisenberg’s uncertainty relation (UR) involving standard deviations of position x
and reduced momentum k (k = p/h̄) is expressed as [1]

σxσk ≥ 1

2
. (1)

The relation has later been extended to two arbitrary non-commuting observables
[2]. A recent survey [3] has paid considerable attention to several points of this UR.
However, it was also realized that σx is not always [4] a neat and physical measure
of ‘uncertainty’ associated with the mean value of x . Such situations also include
probability distributions (PD) like a Lorentzian for which σx = ∞ and distributions
with multiple peaks. To combat the latter, an ‘equivalent width’ concept [5] was put
forward long back, but it did not gain much popularity. Instead, another form of the UR
by involving Shannon entropy has received sufficient curiosity. This UR is succinctly
represented as [6–9]
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SS(x) + SS(k) ≥ 1 + ln(π), (2)

where SS(x) refers to the Shannon entropy in position space and is defined by

SS(x) = −〈ln(P(x))〉, (3)

with P(x) as the normalized PD. A similar definition for SS(k) follows with the cor-
responding PD P(k) in k-space. If P(x) = |�(x)|2, then P(k) = |�(k)|2 such that
functions �(x) and �(k) are Fourier transforms (FT) of each other:

�(x) =
(

1/
√

2π
) ∞∫

−∞
�(k) exp[ikx] dk;

�(k) =
(

1/
√

2π
) ∞∫

−∞
�(x) exp[−ikx] dx . (4)

The entropic UR (EUR), relation (2), has also been extended to general non-commut-
ing observables [10].

The Shannon entropy has received considerable popularity in a wide variety of con-
texts (see, e.g., [11–16] and references quoted therein) starting from statistical mechan-
ics [11,12] to polymer chemistry [13], thermodynamics [14], quantum mechanics [15]
and quantum chemistry [16]. So, EUR in the form (2) has received wide acceptance
[4,17]. As the next step, therefore, it has become natural to look for similar relations
with other information measures. Thus, Rényi entropy has received some attention
[18–20]; the relevance of Tsallis entropy in the context of EUR has been explored
[21–23]; finally, role of the Fisher information measure has also been noted [24,25].
Still, one observes that it is EUR (2) that is the most popular one.

The main difficulty with (2), however, is the FT part, unlike (1). More often than
not, the transform is obtained only after cumbersome exercises. So, we like to modify
(2) in such a way that any FT is avoided. We achieve this by recalling IF (x), the Fisher
information in position space, a function of which replaces the SS(k) term in (2). This
makes a concomitant change at the right side of (2) as well. But, we shall see that,
while a Gaussian yields the equality here too, our form is sometimes more sensitive
than (2).

2 The relation

The Fisher information measure is defined by

IF (x) = 〈(d ln(P(x)/dx)2〉. (5)

For a real quantum-mechanical wave function, it is easy to check [15] that

IF (x) = 4σ 2
k . (6)
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Coupled with (1), (6) yields the well-known Cramer-Rao inequality [24]. In this con-
text, it is essential to point out that Hall [24] discussed at some length on the genesis
of following two inequalities:

√
2πe σx ≥ exp[SS(x)]; (7a)

exp[SS(x)] ≥ √
2πe/IF (x). (7b)

Of these, the first one (7a) has received considerable concern because it shows directly
that (2) offers a tighter inequality than (1). Indeed, this feature alone provides a strong
motivation in switching over to (2) from (1). Need less to mention, the exact equality
in either case follows for a Gaussian distribution.

We shall, on the other hand, concentrate on the second inequality (7b) on which
only scanty attention was paid. A slight rearrangement leads us to

SS(x) + 1

2
ln(IF (x)) ≥ 1

2
ln(2πe). (8)

If we compare (8) with (2), it becomes apparent that the second term at the left of (8)
accounts, in effect, for SS(k). This identification has a nice physical appeal [15]. As
the Fisher information in position space increases, the same in k-space decreases and
hence the entropy increases. Effectively, thus, (8) becomes the new EUR. Here, the
FT part is avoided naturally. One can put (8) more succinctly as

SS(x) + SF (k) ≥ 1

2
ln(2πe) (9)

where

SS(k) ∼ SF (k) = 1

2
ln(IF (x)). (10)

Note that we have used here SF (k) to denote a derived Fisher entropy. One might, for
example, define a true Fisher entropy in k-space as

SF (k) = − ln(IF (k)), (11)

but that will again invite the FT, and hence is of little use here.

3 Some advantages

Let us choose a few test cases to see how quickly one can compute the desired quan-
tities:

Case (i): For P(x) = (2/L) sin2(nπx/L) with x in (0, L), we find

SS(x) + SF (k) ≥ 2 ln(2) + ln(π) − 1 + ln(n) ≈ 1.53 + ln(n). (12)
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This PD refers to the quantum-mechanical particle in a 1-d box model. Here, we notice
that the entropy sum increases linearly with the logarithm of the quantum number. At
large n, this is virtually equal to the number of zeroes of the PD. Indeed, we may
appreciate that, while (12) is exact, such a dependence of the left side on the loga-
rithm of the number of zeroes is a general semiclassical result for bound stationary
states of any 1-dimensional potential. Actually, on employing the Wilson-Sommerfeld
quantization rule, one finds [15] that

SS(x) + SF (k) = ln(2π) + ln(n), (13)

where

SS(x) = − ln (〈P(x)〉) (14)

and it satisfies (see also Sec. IV of ref. [15])

SS(x) ≥ SS(x). (15)

We thus note two more aspects of the problem. First, the appearance of SF (k) in the
present context is a natural one. Secondly, (13) and (15) yield

SS(x) + SF (k) ≥ ln(2π) (16)

for the lowest (n = 1) quantum state. While semiclassical results are usually valid
in the n → ∞ limit, (16) is not too far from the exact inequality (8). In view of
the current interest in IF for Schrödinger energy eigenfunctions [26], such a result is
worth mentioning.

Case (ii): With P(x) = (α/π)(α2 + x2)−1 and x in (−∞,∞), it turns out that

SS(x) + SF (k) ≥ 3

2
ln(2) + ln(π) ≈ 2.18. (17)

We talked about this Lorentzian PD earlier where the UR (1) fails to perform. Here,
however, we notice how quickly one obtains a neat result.

Case (iii): We next choose P(x) = 4π(α/π)3/2x2 exp[−αx2] with x in (0,∞).
One finds here that

SS(x) + SF (k) ≥ 1

2
ln(6π) + γ − 1

2
≈ 1.55, (18)

where γ is the Euler constant. This PD corresponds to the classical Maxwell speed
distribution and, therefore, (18) shows the applicability of EUR to such a classical
case too. Indeed, to incorporate such classical PD, we have deliberately avoided any
reference to h̄ at the outset and used the variable k instead of p.
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Case (iv): We finally choose P(x) = (2α3/π)(α2 + x2)−2 with x in (−∞,∞).
This PD leads one to the result

SS(x) + SF (k) ≥ 7

2
ln(2) + ln(π) − 2 ≈ 1.57. (19)

This particular example has a special appeal. Going over to P(k), we obtain for this
case

SS(x) + SS(k) = 3 ln(2) + ln(π) − 1 ≈ 1.079 + ln(π). (20)

This result may be contrasted with (19). One notes that this non-Gaussian PD reveals
a deviation of about 10.7 % in the EUR (8) from the result for a Gaussian while (20)
shows that the value departs from the equality only by 3.7 % when one opts for EUR
(2). Such an outcome brings to light that, in situations, form (8) may be more sensitive
than (2) as well. Actually, this deviation should have a direct link with the overlap of
a chosen function with a Gaussian. Further work along this direction may be useful.

4 Conclusion

In summary, the use of mixed entropies in constructing EUR has not been tried so far.
We have found here a form of EUR [see (8)] by invoking simultaneously the Shan-
non and Fisher information measures. It is simple and applicable to both classical
and quantum PD. It does not require any FT. Sometimes, it is more sensitive than the
parent form (2). Its semiclassical relevance in the context of Schrödinger eigenvalue
problems is also notable. Further exploration with this form vis-à-vis other forms of
EUR may be worthwhile. The derived Fisher entropy in k-space may also find other
interesting applications.
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